Source code for neo4j_graphrag.llm.mistralai_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
from __future__ import annotations

import os
from typing import Any, Iterable, List, Optional, Type, Union, cast, overload

from pydantic import BaseModel, ValidationError

from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm.base import LLMInterface, LLMInterfaceV2
from neo4j_graphrag.llm.types import (
    BaseMessage,
    LLMResponse,
    MessageList,
    SystemMessage,
    UserMessage,
)
from neo4j_graphrag.message_history import MessageHistory
from neo4j_graphrag.types import LLMMessage
from neo4j_graphrag.utils.rate_limit import (
    RateLimitHandler,
)
from neo4j_graphrag.utils.rate_limit import (
    async_rate_limit_handler as async_rate_limit_handler_decorator,
)
from neo4j_graphrag.utils.rate_limit import (
    rate_limit_handler as rate_limit_handler_decorator,
)

try:
    from mistralai import (
        AssistantMessage,
        Messages,
        Mistral,
    )
    from mistralai import (
        SystemMessage as MistralSystemMessage,
    )
    from mistralai import (
        UserMessage as MistralUserMessage,
    )
    from mistralai.models.sdkerror import SDKError
except ImportError:
    Mistral = None  # type: ignore
    SDKError = None  # type: ignore


# pylint: disable=redefined-builtin, arguments-differ, raise-missing-from, no-else-return
[docs] class MistralAILLM(LLMInterface, LLMInterfaceV2): def __init__( self, model_name: str, model_params: Optional[dict[str, Any]] = None, rate_limit_handler: Optional[RateLimitHandler] = None, **kwargs: Any, ): """ Args: model_name (str): model_params (str): Parameters for LLMInterface(V1) like temperature and such that will be passed to the chat completions endpoint rate_limit_handler (Optional[RateLimitHandler]): Handler for rate limiting for LLMInterface(V1). Defaults to retry with exponential backoff. kwargs: All other parameters will be passed to the Mistral client. """ if Mistral is None: raise ImportError( """Could not import Mistral Python client. Please install it with `pip install "neo4j-graphrag[mistralai]"`.""" ) LLMInterfaceV2.__init__( self, model_name=model_name, model_params=model_params or {}, rate_limit_handler=rate_limit_handler, **kwargs, ) api_key = kwargs.pop("api_key", None) if api_key is None: api_key = os.getenv("MISTRAL_API_KEY", "") self.client = Mistral(api_key=api_key, **kwargs) # overloads for LLMInterface and LLMInterfaceV2 methods @overload # type: ignore[no-overload-impl] def invoke( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: ... @overload def invoke( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: ... @overload # type: ignore[no-overload-impl] async def ainvoke( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: ... @overload async def ainvoke( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: ... # switching logics to LLMInterface or LLMInterfaceV2
[docs] def invoke( # type: ignore[no-redef] self, input: Union[str, List[LLMMessage]], message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: if isinstance(input, str): return self.__invoke_v1(input, message_history, system_instruction) elif isinstance(input, list): return self.__invoke_v2(input, response_format=response_format, **kwargs) else: raise ValueError(f"Invalid input type for invoke method - {type(input)}")
[docs] async def ainvoke( # type: ignore[no-redef] self, input: Union[str, List[LLMMessage]], message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: if isinstance(input, str): return await self.__ainvoke_v1(input, message_history, system_instruction) elif isinstance(input, list): return await self.__ainvoke_v2( input, response_format=response_format, **kwargs ) else: raise ValueError(f"Invalid input type for ainvoke method - {type(input)}")
# implementations @rate_limit_handler_decorator def __invoke_v1( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends a text input to the Mistral chat completion model and returns the response's content. Args: input (str): Text sent to the LLM. message_history (Optional[Union[List[LLMMessage], MessageHistory]]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invocation. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ try: if isinstance(message_history, MessageHistory): message_history = message_history.messages messages = self.get_messages(input, message_history, system_instruction) response = self.client.chat.complete( model=self.model_name, messages=messages, **self.model_params, ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e) def __invoke_v2( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: """Sends a text input to the Mistral chat completion model and returns the response's content. Args: input (List[LLMMessage]): Messages sent to the LLM. response_format: Not supported by MistralAILLM. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ if response_format is not None: raise NotImplementedError( "MistralAILLM does not currently support structured output" ) try: messages = self.get_messages_v2(input) response = self.client.chat.complete( model=self.model_name, messages=messages, **self.model_params, **kwargs ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e) @async_rate_limit_handler_decorator async def __ainvoke_v1( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends a text input to the MistralAI chat completion model and returns the response's content. Args: input (str): Text sent to the LLM. message_history (Optional[Union[List[LLMMessage], MessageHistory]]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invocation. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ try: if isinstance(message_history, MessageHistory): message_history = message_history.messages messages = self.get_messages(input, message_history, system_instruction) response = await self.client.chat.complete_async( model=self.model_name, messages=messages, **self.model_params, ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e) async def __ainvoke_v2( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: """Asynchronously sends a text input to the MistralAI chat completion model and returns the response's content. Args: input (List[LLMMessage]): Messages sent to the LLM. response_format: Not supported by MistralAILLM. Returns: LLMResponse: The response from MistralAI. Raises: LLMGenerationError: If anything goes wrong. """ if response_format is not None: raise NotImplementedError( "MistralAILLM does not currently support structured output" ) try: messages = self.get_messages_v2(input) response = await self.client.chat.complete_async( model=self.model_name, messages=messages, **self.model_params, **kwargs, ) content: str = "" if response and response.choices: possible_content = response.choices[0].message.content if isinstance(possible_content, str): content = possible_content return LLMResponse(content=content) except SDKError as e: raise LLMGenerationError(e) # subsidiary methods
[docs] def get_messages( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> list[Messages]: """Constructs the message list for the Mistral chat completion model.""" messages = [] if system_instruction: messages.append(SystemMessage(content=system_instruction).model_dump()) if message_history: if isinstance(message_history, MessageHistory): message_history = message_history.messages try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return cast(list[Messages], messages)
[docs] def get_messages_v2( self, input: list[LLMMessage], ) -> list[Messages]: """Constructs the message list for the Mistral chat completion model.""" messages: list[Messages] = [] for m in input: if m["role"] == "system": messages.append(MistralSystemMessage(content=m["content"])) continue if m["role"] == "user": messages.append(MistralUserMessage(content=m["content"])) continue if m["role"] == "assistant": messages.append(AssistantMessage(content=m["content"])) continue raise ValueError(f"Unknown role: {m['role']}") return messages