Source code for neo4j_graphrag.llm.cohere_llm

#  Copyright (c) "Neo4j"
#  Neo4j Sweden AB [https://neo4j.com]
#  #
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#  #
#      https://www.apache.org/licenses/LICENSE-2.0
#  #
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.

# built-in dependencies
from __future__ import annotations

from typing import (
    TYPE_CHECKING,
    Any,
    Iterable,
    List,
    Optional,
    Type,
    Union,
    cast,
    overload,
)

# 3rd party dependencies
from pydantic import BaseModel, ValidationError

# project dependencies
from neo4j_graphrag.exceptions import LLMGenerationError
from neo4j_graphrag.llm.base import LLMInterface, LLMInterfaceV2
from neo4j_graphrag.llm.types import (
    BaseMessage,
    LLMResponse,
    MessageList,
    SystemMessage,
    UserMessage,
)
from neo4j_graphrag.message_history import MessageHistory
from neo4j_graphrag.types import LLMMessage
from neo4j_graphrag.utils.rate_limit import (
    RateLimitHandler,
)
from neo4j_graphrag.utils.rate_limit import (
    async_rate_limit_handler as async_rate_limit_handler_decorator,
)
from neo4j_graphrag.utils.rate_limit import (
    rate_limit_handler as rate_limit_handler_decorator,
)

if TYPE_CHECKING:
    from cohere import ChatMessages


# pylint: disable=redefined-builtin, arguments-differ, raise-missing-from, no-else-return, import-outside-toplevel
[docs] class CohereLLM(LLMInterface, LLMInterfaceV2): """Interface for large language models on the Cohere platform Args: model_name (str, optional): Name of the LLM to use. Defaults to "gemini-1.5-flash-001". model_params (Optional[dict], optional): Additional parameters for LLMInterface(V1) passed to the model when text is sent to it. Defaults to None. system_instruction (Optional[str], optional): Additional instructions for setting the behavior and context for the model in a conversation. Defaults to None. rate_limit_handler (Optional[RateLimitHandler], optional): A rate limit handler for LLMInterface(V1) to manage API rate limits. Defaults to None. **kwargs (Any): Arguments passed to the model when for the class is initialised. Defaults to None. Raises: LLMGenerationError: If there's an error generating the response from the model. Example: .. code-block:: python from neo4j_graphrag.llm import CohereLLM llm = CohereLLM(api_key="...") llm.invoke("Say something") """ def __init__( self, model_name: str = "", model_params: Optional[dict[str, Any]] = None, rate_limit_handler: Optional[RateLimitHandler] = None, **kwargs: Any, ) -> None: try: import cohere except ImportError: raise ImportError( """Could not import cohere python client. Please install it with `pip install "neo4j-graphrag[cohere]"`.""" ) LLMInterfaceV2.__init__( self, model_name=model_name, model_params=model_params or {}, rate_limit_handler=rate_limit_handler, **kwargs, ) self.cohere = cohere self.cohere_api_error = cohere.core.api_error.ApiError self.client = cohere.ClientV2(**kwargs) self.async_client = cohere.AsyncClientV2(**kwargs) # overloads for LLMInterface and LLMInterfaceV2 methods @overload # type: ignore[no-overload-impl] def invoke( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: ... @overload def invoke( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: ... @overload # type: ignore[no-overload-impl] async def ainvoke( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: ... @overload async def ainvoke( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: ... # switching logics to LLMInterface or LLMInterfaceV2
[docs] def invoke( # type: ignore[no-redef] self, input: Union[str, List[LLMMessage]], message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: if isinstance(input, str): return self.__invoke_v1(input, message_history, system_instruction) elif isinstance(input, list): return self.__invoke_v2(input, response_format=response_format, **kwargs) else: raise ValueError(f"Invalid input type for invoke method - {type(input)}")
[docs] async def ainvoke( # type: ignore[no-redef] self, input: Union[str, List[LLMMessage]], message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: if isinstance(input, str): return await self.__ainvoke_v1(input, message_history, system_instruction) elif isinstance(input, list): return await self.__ainvoke_v2( input, response_format=response_format, **kwargs ) else: raise ValueError(f"Invalid input type for ainvoke method - {type(input)}")
# implementations @rate_limit_handler_decorator def __invoke_v1( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[Union[List[LLMMessage], MessageHistory]]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invocation. Returns: LLMResponse: The response from the LLM. """ try: if isinstance(message_history, MessageHistory): message_history = message_history.messages messages = self.get_messages(input, message_history, system_instruction) res = self.client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError(e) return LLMResponse( content=res.message.content[0].text if res.message.content else "", # type: ignore[union-attr] ) @rate_limit_handler_decorator def __invoke_v2( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: """Sends text to the LLM and returns a response. Args: input (List[LLMMessage]): The messages to send to the LLM. response_format: Not supported by CohereLLM. Returns: LLMResponse: The response from the LLM. """ if response_format is not None: raise NotImplementedError( "CohereLLM does not currently support structured output" ) try: messages = self.get_messages_v2(input) res = self.client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError("Error calling cohere") from e return LLMResponse( content=( res.message.content[0].text if res.message.content and hasattr(res.message.content[0], "text") else "" ), ) @async_rate_limit_handler_decorator async def __ainvoke_v1( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> LLMResponse: """Asynchronously sends text to the LLM and returns a response. Args: input (str): The text to send to the LLM. message_history (Optional[Union[List[LLMMessage], MessageHistory]]): A collection previous messages, with each message having a specific role assigned. system_instruction (Optional[str]): An option to override the llm system message for this invocation. Returns: LLMResponse: The response from the LLM. """ try: if isinstance(message_history, MessageHistory): message_history = message_history.messages messages = self.get_messages(input, message_history, system_instruction) res = await self.async_client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError(e) return LLMResponse( content=res.message.content[0].text if res.message.content else "", # type: ignore[union-attr] ) @async_rate_limit_handler_decorator async def __ainvoke_v2( self, input: List[LLMMessage], response_format: Optional[Union[Type[BaseModel], dict[str, Any]]] = None, **kwargs: Any, ) -> LLMResponse: if response_format is not None: raise NotImplementedError( "CohereLLM does not currently support structured output" ) try: messages = self.get_messages_v2(input) res = await self.async_client.chat( messages=messages, model=self.model_name, ) except self.cohere_api_error as e: raise LLMGenerationError("Error calling cohere") from e return LLMResponse( content=( res.message.content[0].text if res.message.content and hasattr(res.message.content[0], "text") else "" ), ) # subsdiary methods
[docs] def get_messages( self, input: str, message_history: Optional[Union[List[LLMMessage], MessageHistory]] = None, system_instruction: Optional[str] = None, ) -> ChatMessages: """Converts input and message history to ChatMessages for Cohere.""" messages = [] if system_instruction: messages.append(SystemMessage(content=system_instruction).model_dump()) if message_history: if isinstance(message_history, MessageHistory): message_history = message_history.messages try: MessageList(messages=cast(list[BaseMessage], message_history)) except ValidationError as e: raise LLMGenerationError(e.errors()) from e messages.extend(cast(Iterable[dict[str, Any]], message_history)) messages.append(UserMessage(content=input).model_dump()) return messages # type: ignore
[docs] def get_messages_v2( self, input: list[LLMMessage], ) -> ChatMessages: """Converts a list of LLMMessage to ChatMessages for Cohere.""" messages: ChatMessages = [] for i in input: if i["role"] == "system": messages.append(self.cohere.SystemChatMessageV2(content=i["content"])) elif i["role"] == "user": messages.append(self.cohere.UserChatMessageV2(content=i["content"])) elif i["role"] == "assistant": messages.append( self.cohere.AssistantChatMessageV2(content=i["content"]) ) else: raise ValueError(f"Unknown role: {i['role']}") return messages